Teaching little ones the mysteries & potential of biochar

Teaching kids

I am excited to be providing a little biochar education to lower school kids at Allendale Columbia within the context of their revamped STEM program next month.  Teaching little ones about the benefits of biochar makes me think hard about boiling down the key information to the most basic level.  Since few adults, let alone kids, have ever heard the word biochar, I am going down the ‘what is charcoal’ path just so they will at least have a point of reference (I may have to grill them on the differences though!).  In the past, the whole charcoal-biochar confusion often made me fume, but I’ve been warming to the idea (over some slow burning embers of course) over the past year or so!

As I research how charcoal has been used through the ages, one cannot help wondering how the idea of eating charcoal to neutralize poisons ever popped into someone’s head or the notion of brushing your teeth, cleaning your skin, purifying your water or many of the other seemingly endless uses for biochar that ancient civilizations conceived.  Derring-do or desperation?  Curiosity or Happenstance?

The rationale for putting charcoal in the soil though, seems a bit easier to unearth.  Early humans may have seen that forests or fields burned after lightning strikes resulted in more vigorous growth. Or perhaps before abandoning campfires women covered them with dirt to prevent larger fires and subsequently noticed that plants grew better atop the charred remains of ‘expyred’ campfires.  Whatever the reason, whomever the ingenious souls, millions have benefited from the various uses of charcoal across the millennia.

Ideally education, in my humble opinion, should seek to re-ignite these seemingly ancient powers of observation, of drawing conclusions from real world actions, as well as inspiring the curiosity to try new and different things. How to weave all of that into a narrative that kids will get excited about is the challenge. The picture above is my attempt at creating that story (wish me luck!).  The 2nd graders will be experimenting with water filtration projects using biochar and the 3rd graders will be performing experiments with growing plants in biochar. Should be fun!

[All educational materials are available free of charge, just drop me a note via the ‘Contact Us’ page.]

Disaster Debris & Biochar

Disaster Debris & Biochar

One of the biggest fears that one hears about biochar is related to the food versus fuel debate. The thinking goes that in order for biochar to make a significant contribution to reducing atmospheric carbon levels, huge swaths of land would need to be planted with fast growing, high lignin biomass such as bamboo.  On the flip side of the debate is that with an ever increasing number of humans, more and more land will likely be needed for growing food. (Somehow all the acreage dedicated to cotton – more than 11 million acres in the US alone – never seems to come up and I’m just not convinced we need more cotton t-shirts when so many fabrics made from recycled materials are available. But I digress…)

Considering the increasing number of devastating climate events that are felling forests (and buildings) faster and faster, it seems to me that Mother Nature, in her moments of ire, is providing plenty of carbon fodder which could be used for sequestration.  Debris from these ‘natural’ disasters often gets shipped off to landfills.  Some, including the Rocky Mountain Institute, are advocating for this kind of debris to be shipped off to biomass generators to offset fossil fuel energy generation.   A better if not best option IMHO.

Hurricanes Katrina & Rita alone were responsible for killing 320 MILLION trees.  I have absolutely no idea how much carbon each tree might have had on its dying day, but I do know that all of that will go back into the atmosphere if it is chipped & burned.

Let’s ponder the possibilities of pyrolyzing these piles for a moment.  I posed the question to a forestry friend of mine last night and just for giggles, we assumed the average tree weight was 1,600 lbs and 25% was carbon or 400 lbs per tree.  Converting this biomass to biochar could sequester up to half of that carbon which would be something like 64,000,000,000 lbs of Carbon.  Then do the math on the CO2 equivalent for that carbon and we arrived at the exact figure of ‘nothing to sneeze at’ especially when you consider the alternatives!

At the same time the biochar produced can be used to rebuild the soils that have been damaged by sewage or other bio-hazards.  As an example Tropical Storm Irene damaged more than 20,000 acres of farm land in Vermont alone and washed away countless tons of topsoil.  Biochar could have helped to restore much of that damage and prevent plants from taking up some of the toxins.

One of my latest projects includes working with an incredibly knowledgeable retired FEMA manager on the design of a scalable template for debris management which includes biochar.   The model is looking at how communities could/should include biochar in not only disaster or emergency management of debris, but on-going management of yard debris.  Next up we are planning to design a prioritized list of end-uses for the biochar based on the needs of the community.  The ways that biochar can be used are not limited to remediating or rebuilding eroded soils, but can include use as a building material to rebuild homes, retaining walls and several other long-lasting products.

With the increasing number of affordable and portable technologies available which can convert wood chips into heat, electricity and biochar, I can see the day when many disaster-prone communities have a pyrolysis unit at the ready to handle ice storm debris, tornado detritus, or the wreckage which follows hurricanes.  Turning the downed biomass into biochar could go a long way towards helping both communities and the planet to recover.

Burying Carbon for Good

Burying Carbon for Good

Don’t ask me how this latest use for biochar popped in to my head.  I suspect it was a combination of reading this article on the Ithaka Journal which talks about how a dead rat was buried in charcoal and decomposed with nary an odor plus thinking about sink holes plus thinking about one of my favorite profs at grad school who is launching a green burial business in Texas.  Regardless of how this somewhat morbid notion found its way in to my brain, I think I may have unearthed a way to make burials greener than ever before.

Green burials, for those that have not heard the term, are all about taking the nasty chemicals and non-biodegradable materials out of the current burial traditions commonly practiced in some westernized societies. Little did I know just how much wood, steel, concrete and embalming fluids are used, suffice to say heaps!

Rest peacefully dear reader, I am not going to suggest we bury our recently departed brethren in a cigar box filled with biochar as the researchers did in 1853.  What could be really novel and much, much better for the environment though, would be to replace burial vaults (a concrete tomb the caskets go in to prevent cave-ins after the caskets have disintigrated) out of biochar.  Crazy?  Not completely, especially when you consider an entire house has already been built with biochar. Just think how much happier the soil critters would be with biochar buried deep in their midst instead of concrete.

Why stop with burial vaults when caskets could also be molded out of biochar too (imagine the ‘xPyre’ model!).  In traditional cemeteries the mausoleums and headstones could even be made out of biochar saving all that granite, marble and cement for more animated uses.

And just to lay to rest any lingering concerns you might have, some researchers believe that the ancient civilizations that created the original Terra Preta soils, may have entombed their dead in charcoal leading to the creation of ‘necrosoils’. (sounds like something in a bad video game).  Everything old can be new again!

So green burial industry, perhaps it is time to get started exploring how biochar can make your industry even greener by burying carbon for good!

From Sink Holes to Carbon Sinks

Sinkholes to Carbon Sinks

For no apparent reason, I seem to have a perverse fascination with sink holes.  I’ve never seen one up close nor do I live in an area of the world where they are common.  But it seems to me that both the frequency and the parts of the world where they are occurring are on the increase.

Every time I see a new story on the latest sink hole, I spend a few minutes flirting with Master Google to learn more about them.  Regions with cavities in the earth’s surface are usually where sinkholes are most likely to occur, be they from Mother Nature (e.g. caves or aquifers) or from mankind (e.g. abandoned mines or sewage lines).  Changes to these cavities resulting from downpours, droughts and fracking are often the cause and there seems to be a lot more of all three of those these days!

What to do with a giant hole in the ground?  In ancient times sinkholes were often used as a sort of landfill which could lead to polluting of groundwater.  Nowadays there are different solutions to sinkholes from converting them into lakes, to filling them with cement or grout.  In extreme cases, communities have been forced to flee the area or risk being swallowed up!

How to go from sinkhole to carbon sink – to turn the abyss into something better if not quite bliss? With biochar of course!  I’m really treading on shaky ground here from a science perspective, but it seems to me that instead of drilling & filling with grout or concrete, a better solution might be filling up the nooks & crannies with biochar.  Not only would this probably allow water to filter down to recharge aquifers more quickly, it would likely help filter toxins and thus keep them out of the groundwater or in the case of the ever expanding Louisiana sinkhole, it might help mitigate some of the H2S or methane that seems to be percolating up from the ground.  And the silver lining?  LOTS of carbon sequestered!

Just how much CO2 could be sequestered in this manner is a little hard to calculate.  But considering just this one hole in Guatemala was 100’ deep and gobbled up 6,500 square feet of concrete in an attempt to put a band-aide on the gash, there seems to be a plenty of room to bury this highly stable form of carbon in the ever growing number of sinkholes.

It might be interesting to explore this idea with old oil wells too.  Texas sure needs some help recharging their aquifers these days and they have a heck of a lot of old oil wells dotting their landscape.

Such are my latest musings from the latest rabbit hole I stumbled down…

Terra Pee Pads

Terra Pee Pad v2

A few days ago, I took my sleepless night idea, the Terra Pee Pad for puppies with small bladders, to the next level and made a V1 prototype pictured above.

Making it was fairly simple.  I purchased a roll of biodegradable landscaping fabric (could not believe I’d find that in January) and sewed up the sides.  Inside I added a few pounds of a biochar + vermicompost mix that I had sitting around and then sewed up the top.  As some of the finer particles of char can escape this kind of fabric, I put the Pad in a low box so it wouldn’t make a mess on the floor.

The results have been interesting.  While I would love to claim that puppy trotted right over to it for a quick pee on the pad, she has taken awhile to figure out that there is a preferred spot for doing her business, at least in my humble opinion.  Having said that, she has now started to use the TP pad for its intended use and more.  I am happy to report my human nose could detect ZERO odors after several deposits.  I shouldn’t be too surprised with that, but what did surprise me is that the canine nose apparently has no issues with it either.  How do I know this?  Well puppy doesn’t just pee on the Pad, she has slept on it too.  Kind of gross, but kind of interesting too.  I have some ideas for v2 of the TP pad but I have to say I’m liking the concept a lot so far!

In reading up on the contents of dog urine, ever a fascinating subject, and how destructive it can be to lawns (unless of course you like the polka dot look) and urban trees, it occurred to me that homeowners might want to create a little Terra Pee sandbox for dogs to conduct their business in with a similar TP pad which could eventually be used in gardens.  And for those poor peed upon urban trees, how about a TP skirt around the trunk so that the trees don’t OD on nitrogen and fall to an early demise?  I know Chicago is testing char on urban trees but they are drilling the char into the soil.  Perhaps layering it on top in a contained package like the TP pad might be another solution, at least for those trees that doggies tend to favor.  Now if I could only convince some urban landscapers to give this a shot…

Potty Training Puppies with Terra Preta?

Potty Training

Few things are as exciting or exhausting as a new puppy.   In my life I can only think of two: raising children and being on the ground floor of the nascent biochar industry.  Not satisfied with only two of these in my life, I’ve decided that three exciting, exhausting outlets is really what I need to make my life complete(ly crazy).

Enter a 2.5 lb Pugzu puppy who has yet to be named (I’m a pushing for Preta but my daughter is not yet convinced).  In an effort to housebreak (interesting word for it) the puplette I’ve been researching all sorts of ridiculous inventions such as the elegantly named ‘wee wee pads’.  It’s bad enough that we send zillions of tons of baby diapers to landfills but the thought of adding doggie diapers to garbage mountains was keeping me up at night (of course that could have just been the puppy).

Then this morning at 3am, the solution hit me.  I really need to make a reusable or recyclable version of a wee wee pad with biochar inside.  I’ve dubbed this world-changing idea the ‘Terra Pee’ Pad.  While you might think this is a tad crazy, there are already variations on this theme.  The CH’artist has a biochar pillow and he tells me it brings quite the peaceful slumber.  And the notion of using charcoal inserts in diapers is apparently gaining steam and hiding odors! Although the current inserts use an actual fabric made out of charcoal, I figure why not try loose char in some kind of pillowcase?  Once a certain amount of ‘business’ has been conducted on the Terra Pee pads, I can just empty the nitrogen filled char into the compost bin or the garden (which is under a foot of snow at the moment).  I am sure I will sleep much better tonight after having figured out how to combine two of the three exciting yet exhausting things in my life.  The hunt for washable, biodegradable fabric is on! (Recommendations welcome.)

 

Oh Christmas Tree, Oh Christmas Tree

Oh Christmas Tree

It’s that time of year again when Christmas Trees by the millions have been weaned from their stumps to spruce up  homes around the world.  Last year in the US alone 24 million trees were sold that were grown on 174,000 acres of often marginal land, down from a peak of 446,996 acres in 2002.  Did you know that an acre of living Christmas trees can soak up to ~11,000 pounds of CO2  per year all the while providing enough oxygen for 18 people? Talk about a Giving Tree!

The good news is that an increasing number of communities host tree recycling programs where trees are chipped and the resulting mulch is used by residents or the local parks & recreation departments for a variety of different uses (e.g. mulch, erosion control, habitat creation, etc.).

Perhaps there is an even better use for all of those trees once they have decked the halls.  Consider this: by my back of the envelop calculations 24M trees contain the equivalent of at least 600 MILLION pounds of CO2.  In the current best case scenario (i.e. trees recycled into mulch) all of that CO2 goes back into the Carbon cycle within a few short years.  If, however, communities were to convert trees into biochar, up to half of the CO2 could then be prevented from re-entering the Carbon Cycle.  Communities looking to reduce their GHG emissions might be able to use this as a carbon offset product.  The heat generated during production could be used in the local Recycling Center and municipalities could sell the biochar to residents or to a third party as a revenue generating opportunity.

That could add up to a Ho Ho Ho Lotta savings and CO2 reductions!

 

A holiday song for my fellow Charistas:

Oh Christmas tree, Oh Christmas tree!
Oh what I’d give to char thee!

Oh Christmas tree, Oh Christmas tree,
Oh what I’d give to char thee!

 At first you’re green when summer’s here,
But then you’re dead after the New Year
Oh Christmas tree, Oh Christmas tree,
Oh what I’d give to char thee!

 Oh Christmas tree, Oh Christmas tree,
Much carbon could you bury!
Oh Christmas tree, Oh Christmas tree,
Much carbon could you bury!

For every year the Christmas tree,
Could help the soil eternally.
Oh Christmas tree, Oh Christmas tree,
Much carbon could you bury!

 

The Case for Waste Making Haste toward More Sustainable Cities

waste makes hasteThe notion of ‘waste’ is so last century.  In the new century this stuff is pure gold and I believe it could be the cornerstone for making urban areas more sustainable and even regenerative.  Waste optimization could also spur innumerable entrepreneurial ventures.

Waste conversion technologies are not new but next generation variants are gaining steam – some are even producing steam!  Historically many have focused on how to convert waste into some type of energy which is obviously better than shipping it off to landfills.  However newer versions of older technologies, such as thermochemical conversion (TC) create multiple end products including: heat, liquid biofuels and biochar, a highly stable form of carbon used as a soil amendment (also referred to as ‘char’ when not used in the soil). Multiple end-products allow for a more holistic approach to optimizing organic ‘waste’.

Here is a view on how cities can more closely mimic nature when it comes to managing their organics using TC technology.

Large scale TC equipment could be utilized at recycling centers where landscapers drop off tree debris which then generates heat & electricity for the recycling center, biogas to run the equipment, and biochar which could be added to compost to speed decomposition or used to reduce odors and control toxic leachate at local landfills or sold to generate income.

Smaller scale TC equipment could be used directly at the source of ‘waste’ generation such as food processors, restaurants, etc. where the heat & electricity could be used on-site to reduce costs and carbon footprints.  Char could be sold to a third party where, depending on the characteristics of the char and the needs & priorities of the region, it could be made into a wide variety of locally made products including:

Building materials: Char-clay plaster could be sprayed over walls to retrofit buildings with poor insulation, humidity issues (possibly after floods to prevent mold) or lead paint concerns.  Replacing cement with this highly sustainable product in new construction would materially improve the building’s carbon footprint.

Water filtration devices: Char filters could be used in food processing plants where organics are filtered out of the effluent.  Once absorbed in char filters these nutrients could be recycled back to the soil.

Remediation: Urban brownfields render otherwise valuable land useless. Biochar can be used to economically revitalize these areas.  Other cities ban growing food within city limits due to lead paint concerns in their soils.  As some biochars can neutralize lead, this would allow more urban gardening and improve local food security.

Growing medium: Roof gardens, greenhouses, garden walls could all benefit from a lightweight, locally produced soil amendment, especially if it were boosted with nutrients from the food processing plant’s effluent!  Biochar can also reduce the amount of water needed for growing plants.

Battery Storage: Early research shows potential for certain chars to be able to effectively replace rare earth metals in super capacitors & microbial fuel cell batteries.

Pet Products: Adding char to pet food improves health by removing pesticides used to grow much of the food found in animal feed. [Humans have ingested charcoal since ancient times as a means of detoxification!]  Kitty litter char would be highly sustainable and would actually be beneficial when sent to a landfill.

If cities take a more holistic approach to waste optimization they can create a more vibrant entrepreneurial environment while simultaneously improving clean water availability, producing renewable energy and creating green jobs. The added bonus is that biochar can safely help rebalance atmospheric carbon levels.

[This blog post is part of Masdar’s 2014 Engage Blogging Contest.]

Bovine Bedding & Biochar

bovine bedding

Outside of farmers, I suspect few people stay up at night pondering what cows actually sleep on.  But in the unlikely event that you are one of them, allow me to shed a little bit of light on this topic.  There is actually quite a variety of inorganic and organic bedding materials used nowadays.  The main criteria for selecting stuff to feather the bovine nest is a combination of health related concerns (e.g. needs to be comfy, dry, absorptive and should inhibit bacterial growth) and economic necessity (i.e. cheap, plentiful and the lower the labor required to get it in and out the better).

Common inorganic bedding products include sand (good, cheap but can be a nuisance to handle), limestone screenings, and gypsum (from recycled drywall; comes with hazard warnings!).  Inorganic products seem to be better at managing pathogens than the organic stuff which includes sawdust, straw, and shavings (from wood, not men’s chins).  Dried manure solids are apparently popular in some parlors (I have a hard time getting beyond the ick factor with that) although pathogens proliferate in dried dung. And now some cows are even enjoying waterbeds – talk about having to keep up with the Jerseys (cue the farm girl humor)!

While mucking stalls could never be classified as glamorous, it certainly never seemed to be considered hazard duty way back when I used to be relegated to barn clean up duties.  But some of the stuff being used as cow bedding can apparently be downright dangerous according to recent articles out of Cornell and Penn State.

Some farms use a bedding additive to reduce odors, absorb ammonia and suppress pathogens which can lead to mastitis and other nasty ailments.  I haven’t seen any solid research published specifically on using biochar as a bedding additive but I do know that most biochars are good at moisture control, can help with odor control and some studies have shown that it is helpful in disease suppression. Added to that is the ability of biochar to hold on to some of the valuable nutrients in manure which often get lost to the environment either through leaching or through volatilization.  [Did you know that in some experiments up to 99% can be lost?  What a waste!]  This type of multiple use strategy for biochar (or ‘cascading uses’ as the CH’artist calls it) where various triple bottom line benefits are derived makes for a very compelling ‘soilution’.

To recap, in the bovine bedding & biochar scenario the likely benefits are: odor control, improved pathogen control, reduced nutrient leaching, reduced volatilization, improved carbon content to soils, as well as, and this can’t be emphasized enough, no dangerous crap!  So farmers and researchers, isn’t it time to dive deep into bovine bedding & biochar research?

For any of you that have mucking stalls on your bucket list and might be passing through the Finger Lakes, I can definitely hook you up with the mucking experience of a lifetime!

Going with the flow: Biochar & Hydroponics

Hydroponics

I am a complete and udder (cows roaming around in my brain!) utter newbie to the world of hydroponics so when I toured a hydroponics facility in Western New York this week I was like a kid in a candy store: all new stuff to learn and touch and taste (including the yummiest arugula I have ever tasted!).

My naïve assumption was that the biggest opportunity for biochar in the greenhouse world might be as a growing medium.  It still might be, but I learned that the ideal pH for plants in this particular greenhouse is between 5.5 – 5.8 which is lower than the average pH for most chars so we’ll have to figure out a process for lowering it.  However the farm manager actually pointed out a much more interesting opportunity for biochar within the context of hydroponics that has to do with the greenhouse effluent.  Apparently this stuff is loaded with phosphorous and nitrates.  In excess these nutrients can harm local ecosystems and even lead to eutrophication (which can turn lovely blue water into nasty green algae laden, oxygen starved cesspools).

Now I’m thinking that we need to first use the biochar as a filtration medium for the effluent.  Not only would this mitigate the damage to the local ecosystems but most likely the biochar will adsorb the nutrients and effectively charge the biochar with valuable macronutrients.  Then the grower will probably have a great little fertilizer that can be used in the hoop houses where they grow directly in the soil.